Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
نویسندگان
چکیده
Various nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems as potential vehicles for prolonged release of SLNs. SLNs were prepared by solidification of an oil-in-water microemulsion containing stearic acid, surfactants and co-surfactants. Nanoparticles were then dispersed in a thermosensitive Poloxamer 407 aqueous solution (sol) at 4 °C and their effects on gel forming ability, sol-gel transition and rheological behavior of the system were investigated over 5-50 °C. Thermal behavior of the system was investigated by differential scanning calorimetry too. Erosion rate of the gel in the presence and absence of SLN was measured by gravimetric method. Integrity of SLNs in the system was investigated by scanning electron microscopy (SEM) and particle size analysis. SLN showed particle size and zeta potential of 130 ± 1.39 nm and - 44 ± 2.1 mV respectively. Particle size analysis and SEM studies after gel erosion revealed presence of intact SLN in the hydrogel. SLN reduced erosion rate of Poloxamer gel and increased its sol-gel transition temperature from 26 to 29 °C. However, gelling kinetic did not change significantly after addition of SLN. Damping factor <1 indicated stability of the SLN-containing system. Present results indicate potential of sol-gel systems for controlled nanoparticle delivery and show that SLN affects properties of the system.
منابع مشابه
Preparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
AbstractVarious nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems ...
متن کاملPreparation of SLN-containing Thermoresponsive In-situ Forming Gel as a Controlled Nanoparticle Delivery System and Investigating its Rheological, Thermal and Erosion Behavior
AbstractVarious nanoparticles have been investigated as novel drug delivery systems, including solid lipid nanoparticles (SLNs). Due to their rapid clearance from systemic circulation, nanoparticles do not provide sustained action in most cases. Different strategies have been employed to overcome this problem. In this direction, the present study introduces erodible in-situ forming gel systems ...
متن کاملPreparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles
Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...
متن کاملPreparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملIn vitro and in vivo evaluation of an in situ gel forming system for the delivery of PEGylated octreotide.
The objective of this study was to develop a controlled delivery system for PEGylated octreotide using a Poloxamer based in situ gel forming polymer. PEGylated octreotide kept its full biological activity and higher serum half-life compared to the original octreotide. The designed drug delivery system contained low concentration of Poloxamer 407 (P407) (<0.16%) with polyvinyl alcohol (PVA) as a...
متن کامل